In this paper, the liquid-solid equilibrium for the ternary systems composed of 1,2-propanediol, MCl (M=Na, K, Rb, Cs), and H2O were studied at 298.15 and 308.15 K, with the mass fraction of 1,2propanediol ranging from 0 to 0.9. The solubilities, densities, and refractive indices of the saturated systems, and the densities and refractive indices of the unsaturated solutions are reported herein. The solubilities were determined via a titration method using mercury nitrate as the titrant. Refractive index and density data were measured using an Anton Paar RXA170 refractometer and Anton Paar DMA4500 densimeter, respectively. The experimental values of the solubilities and densities of the saturated solutions decreased with increasing 1,2-propanediol concentration, whereas different trends of increase were observed for the refractive indices. The experimental density and refractive index data for the unsaturated solutions increased with increasing 1,2-propanediol to water ratios. Empirical equations have been provided for these properties as a function of concentration. On the basis of the standard deviations, we concluded that the empirical equations could be satisfactorily used to correlate the solubility, density, and refractive index data of the investigated systems. These values will enrich the thermodynamics data for alkali metals in mixed solvents, and lay a foundation for any subsequent work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.