The selective decomposition of microcrystalline cellulose (MCC) by Fe-resin (a modified Dowex 50 by cationexchange) solid catalyst in 5 wt % NaCl solution under hydrothermal conditions has been investigated. The conversion of MCC increases from 24.4% (without catalyst) to 90.9%, and the yield of glucose and levulinic acid (LA) increases from 0.6% and 1.1% (without catalyst) to 38.7% and 33.3%, respectively, under 200 °C for 5 h. The role that Fe-resin/NaCl played in the system is discussed in detail: NaCl could disrupt the hydrogen-bond matrix among cellulose fibers to change highly crystalline cellulose into an amorphous form; Lewis acids on the Fe-resin further boost the depolymerization of amorphous cellulose into watersoluble sugars (WSSs); Fe ions on Fe-resin progressively released into NaCl solution are beneficial to the conversion of WSSs to glucose and LA. A three-step degradation scheme reflecting the main pathways of MCC degradation in the reaction is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.