CsI film has been one of the most extensively used scintillators for indirect X-ray imaging because of its needle-like micro-structure. The purpose of this paper is to investigate the imaging performance of CsI screen as a function of thickness and radiation quality. Four multilayer scintillation screens with microcolumnar CsI:Tl film (thicknesses of 50 µm, 100 µm, 200 µm and 300 µm) included were prepared and coupled to an optical imaging sensor. The modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of these screens were evaluated based on the standard IEC 62220-1, and the results indicated that, in the medium spatial frequency range (1-6 lp/mm), the MTF of CsI screens with the same thickness was lower when the incident X-ray photon energy was higher, possibly owing to scattering and K-fluorescence re-absorption effects. The NNPS in the higher spatial frequency range (above 8 lp/mm) is dominated by stochastic noise while the entrance surface air Kerma (ESAK) decreases. For 100 µm, 200 µm and 300 µm thick CsI screens, the DQE under RQA7 and RQA9 is lower than that under RQA3 and RQA5 due to low absorption efficiency.
Thallium-doped cesium iodide (CsI(Tl)) screens are widely used in X-ray imaging devices because of the columnar structure of CsI(Tl) layer, but few reports focus on the optical role of the substrate in the screen system. In this paper, four substrates including fused silica (SiO2), silver-film coated SiO2, graphite (C) and fiber optic plate (FOP) are used to fabricate CsI(Tl) screens by thermal evaporation. Their imaging performance is evaluated by relative light output (RLO), modulation transfer function (MTF), normalized noise power spectrum (NNPS) and noise equivalent quanta (NEQ). The results reveal that although CsI(Tl) film on graphite plate yields images with the lowest light output, it presents relatively higher spatial resolution and better signal-to-noise characteristics. However, films on SiO2 plate obtain low MTF but high NNPS curves, whether or not coated with silver film. Furthermore, scintillation screens on FOP have bright images with low NNPS and high NEQ, but have the lowest MTF. By controlling the substrate optical features, CsI(Tl) films can be tailed to suit a given application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.