:The amorphous, -GeTe, and -GeTe phases of GeTe can be stably converted to each other under certain conditions. Because doping-based high-concentration holes can improve the thermoelectric and ferroelectric performances of GeTe, and it can be converted quickly between its amorphous and crystalline phases, GeTe has been applied to thermoelectric devices, spintronic devices, phase change switches, phase change memory, and others. Moreover, GeTe has a narrow optical band gap and high carrier mobility, which is expected to contribute positively to the development of high-performance infrared detectors. However, its application in the infrared detector field is still new. In this paper, its physical characteristics and its applications in areas including the thermoelectric, spintronic, and phase transition fields are reported. Based on its photoelectric properties, its application in the infrared detector field is expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.