Antioxidative, immunostimulating, and antihypertensive activities of hot water extracts of fermented Hizikia fusiformis were evaluated. Fermentation with lactic acid bacteria generally increased the biological activities of H. fusiformis. Fermentation with isolated Weissella sp. SH-1 resulted in 13.83-62.15% DPPH radical scavenging activity and 34.90-59.25% SOD-like activity. The maximal inhibition of ACE was 82.25%, and the maximal reduction in NO production was 46.53%. Fermentation with Lactobacillus casei resulted in 11.98-72.84% DPPH radical scavenging activity and 14.17-33.62% of SOD-like activity. The maximal inhibition of ACE was 73.31%, and the maximal reduction in NO production was 65.20%. These results hint at the applicability of fermentation with lactic acid bacteria to improve the diverse biological activities of H. fusiformis and to develop functional materials or foods.
1) In this study, the canadian peat moss extract was purified by a supercritical CO2 using three different conditions and assessed its biological activities. Peat moss was extracted by acid-alkaline extraction method (sample 1) and purified by a supercritical CO2 at 40℃ under pressure of 100 bar (sample 2), 120 bar (sample 3) or 150 bar (sample 4). We evaluated the antioxidant activities of the samples by 1,1diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging, Fe 2+ / ascorbate (FTC) and 2-thiobarbituric acid (TBA) methods. The antioxidant activities were examined by comparing the results with that of ascorbic acid as a positive control. Sample 3 showed relatively higher DPPH radical-scavenging activities than other samples. The antioxidant activity by FIC method exhibited similar results as the DPPH radicalscavenging activities. On the other hand, sample 2 showed higher antioxidant activity measured by TBA method of all. The whitening effects of the samples were examined using mushroom tyrosinase and B16F10 melanoma cells. Sample 3
This study was aimed to verify anti-inflammatory activity of fermented Sargassum siliquanstrum with lactic acid bacteria. Anti-inflammatory activities were compared by measuring the amount of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and suppressive effect on inducible nitric oxide synthase (iNOS) expression in stably transfected RAW 264.7 cells. Inhibitory activities of NO production and iNOS expression were measured after confirmation of NO radical scavenging activities. Fermentation increased NO radical scavenging activities from 7.6% to 15.2% compared to non-fermented condition, and fermentation with Lactobacillus sp. SH-1 was the most efficient. Fermentation without algal debris showed better NO radical scavenging activities than that with debris. Fermentation with Lactobacillus sp. SH-1 also showed the highest NO production inhibitory activity (64.1%) in LPS-stimulated RAW 264.7 cells. LPS-induced iNOS expression was diminished to 28.6, 35.6, 49.4 and 58.5 at 50, 100, 500 and 1,000 μg/ml, respectively, by fermentation with Lactobacillus sp. SH-1. According to MTT assay, fermented S. siliquanstrum did not influence the cell viability at all concentrations tested, meaning no or less cytotoxicity. These results suggest that S. siliquanstrum has NO radical scavenging activity and anti-inflammatory activity. Thus biological activities of S. siliquanstrum were upgraded by fermentation, which could be used for the development of functional foods.Key words : Anti-inflammatory, fermentation, immunity, nitric oxide, Sargassum siliquanstrum *Corresponding author *Tel : +82-51-999-5624, Fax : +82-51-999-5636 *E-mail : slee@silla.ac.kr This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Property changes and bacterial characterizations by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were investigated during the fermentation of Makgeollies by 5 isolated yeast strains. Changes of pH were large between day 0 (pH 6) and day 2 (pH 3) and showed less variation after then. ANOVA analyses revealed that pHs were statistically different with fermentation times (p<0.001), while strains (p=0.60) did not. Acidities were changed from 0.19 to 1.04% and showed rather high increase from day 2, and fermentation times (p<0.001) and strains (p=0.006) represented statistical differences. All strains showed less than 0.150% at amino-type nitrogen contents except S strain showed 0.442% at day 8, and there were no statistical differences with fermentation times (p=0.4558) and strains (p=0.3513). Saccharinities of C strain were higher from day 4, and fermentation times (p<0.0001) and strains (p=0.007) showed statistical differences. Large variation of alcohol concentrations (%) were observed between day 0 (0%) and day 2 (10%) and showed less variation after day 2, and there was no statistical difference with strains. Dominant prokaryotes were Lactobacillus fermentum and Pediococcus pentosaceus, which producing acids and functional materials. Dominant eukaryote was Saccharomyces cerevisiae, which might be resulted from addition of yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.