The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.
KEYWORDS cold in-place recycling (CIR), time domain reflectometer (TDR), moisture content, moisture loss index
The objective of this study was to develop models to predict freshness factors (total viable counts (TVC), pH, volatile basic nitrogen (VBN), trimethylamine (TMA), and thiobarbituric acid (TBA) values) and the storage period in beef using a visible and near-infrared (NIR) spectroscopic technique. A total of 216 beef spectra were collected during the storage period from 0 to 14 d at a 10°C storage. A spectrophotometer was used to measure reflectance spectra from beef samples, and beef freshness spectra were divided into a calibration set and a validation set. Multi-linear regression (MLR) models using the stepwise method were developed to predict the factors. The MLR results showed that beef freshness had a good correlation between the predicted and measured factors using the selected wavelength. The correlation of determination (r 2 ), standard error of prediction (SEP), and ratio of standard deviation to SEP (RPD) of the prediction set for TVC was 0.74, 0.64, and 2.75 Log CFU/cm 2 , respectively. The r 2 , SEP, and RPD values for pH were 0.43, 0.10, and 1.10; those for VBN were 0.73, 1.45, and 2.00 mg%; those for TMA were 0.70, 0.19, and 2.58 mg%; those for TBA values were 0.73, 0.13, and 2.77 mg MA/kg; and those for storage period were 0.77, 1.94, and 2.53 d, respectively. The results indicate that visible and NIR spectroscopy can predict beef freshness during storage.
The aim of this study was to investigate physicochemical changes in Salvia plebeia R. Br. (SPA) upon hot-air drying and blanching. After hot-air drying and blanching, total polyphenol and flavonoid contents were reduced from 96.64 mg and 48.40 mg gallic acid equivalent/g to 29.70 mg and 22.10 mg quercetin equivalent/g, respectively. DPPH radical scavenging activities at 25 μg/mL of SPA were 94.5% for ascorbic acid, 84.3% for hot-air dried SPA, and 59.7% for blanched SPA and there was no significant difference between those of hot-air dried SPA and ascorbic acid as a positive control. Total sugar contents were 7.187% and 6.104% for hot-air dried SPA and blanched SPA, respectively. During the blanching process, sucrose and maltose contents decreased, whereas glucose and fructose contents increased. Glucose and fructose were converted into citric acid in blanched SPA, whereas sucrose and maltose were converted into tartaric acid, malic acid, and succinic acid. Fourteen kinds of amino acids were found, but methionine, lysine, glycine, histidine, and cysteine were absent. The proportion of essential amino acids was 61.76% upon hot-air drying, which was a relatively high amount. In addition, hot-air drying resulted in 1.40 mg/100 g of norvaline as well as 39.00 mg/100 g of GABA, which are non-amino acids. Therefore, Salvia plebeia R. Br. can be used not only as vegetables but also as highly useful and various health functional foods with antioxidant effects and excellent nutrition.
-Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles are coated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhancements in specific surface area and ionic conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.