This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Reduction of the fuel oil consumption and corresponding greenhouse gas exhausted from ships is an important issue for today's ship design and shipping. Several concepts and devices on the superstructure of a container ship were suggested and tested in the wind tunnel to estimate the air drag reduction. As a preliminary performance evaluation, air drag contributions of each part of the superstructure and containers were estimated based on RANS simulation respectively. Air drag reduction efficiency of shape modification and add-on devices on the superstructure and containers was also estimated. Gap-protectors between containers and a visor in front of upper deck were found to be most effective for drag reduction. Wind tunnel tests had been carried out to confirm the drag reduction performance between the baseline(without any modification) configuration and two modified superstructure configurations which were designed and chosen based on the computation results. The test results with the modified configurations show considerable aerodynamic drag reduction, especially the gap-protectors between containers show the largest reduction for the wide range of heading angles. RANS computations for three configurations were performed and compared with the wind tunnel tests. Computation result shows the similar drag reduction trend with experiment for small heading angles. However, the computation result becomes less accurate as heading angle is increasing where the massively separated flow is spread over the leeward side.
The purpose of this study was to develop an aloin-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with poly(vinyl alcohol) (PVA) and carboxyl methyl cellulose (CMC) using a freeze-thawing (F-T) method. Their gel properties, release of drug, in vivo wound healing effect and histopathology were then evaluated. In the wound healing test, this aloin loaded PVA/CMC hydrogel showed faster healing of the wound made in rat dorsum than the aloin carbomer 934 gel or the control (carbomer 934 gel) due to phytochemical activity of aloin and moisture of CMC. In conclusion, the aloin-loaded wound dressing composed of 5% PVA, 5% CMC and 0.125% aloin is a potential wound dressing with enhanced wound healing effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.