This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at 40°C for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, 40°C, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and 35°C) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.
We investigated the changes in microbial and physicochemical characteristics of the raw materials of Saengsk (brown rice, barley, carrot, potato, Angelica utilis Makino and kale) during storage after treatment with slightly acidic electrolyzed water (SAEW). To confirm the antimicrobial effects of the treatment washing solutions as well as the physicochemical changes in chromaticity, we stored the raw materials of Saengsik for 5, 10, 15, 20, 25 and 30 days at storage temperatures of 4, 10, 15, 20, 25 and 30 o C in a shelf-life study. The effects of microbial inhibition were higher in carrot treated with SAEW than in that treated with NaOCl, as indicated by a 1.75 log CFU/g reduction. Moreover, a 1.54 log CFU/g reduction of total coliforms was achieved in brown rice in response to SAEW treatment, which was higher than NaOCl treatment at all storage temperatures and periods. The lightness, redness and yellowness values of the raw materials of Saengsik were not significantly affected by SAEW treatments, except for Angelica utilis Makino and kale, whereas SAEW treatment resulted in decreased chromaticity values when compared to the NaOCl treatment. Overall, there was a significant difference (p<0.05) between the efficacy of the SAEW and NaOCl treatments. These results indicate that washing with SAEW is an effective method to reduce the microorganisms and enhance the shelf-life of raw materials of Saengsik; therefore, it can be effectively used to sanitize ingredients of Saengik without affecting the other properties during storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.