The effect of nuruks and crude amylolytic enzyme on free amino acid and volatile components of brown rice vinegar prepared by static cultures was investigated. Five groups consisted of AV (100% nuruk without crude amylolytic enzyme), BV (75% nuruk; 25% crude amylolytic enzyme), CV (50% nuruk; 50% crude amylolytic enzyme), DV (25% nuruk; 75% crude amylolytic enzyme) and EV (100% crude amylolytic enzyme without nuruk). Free amino acid content in AV vinegar (132.06 mg%) was lower than the others (184.56-191.22 mg%). Acetic acid, 3-methyl butyl acetate, acetoin and isoamyl alcohol were major volatile components as analyzed using gas chromatography-mass spectrometry after headspace solid-phase microextraction. Acetic acid in AV and EV samples represented 67.56% and 55.53% of total GC peak area, respectively. E-nose provided different patterns in each case showing variation in sensory properties.
This study investigated the quality characteristics of brown rice vinegar (agitated culture and static culture) derived from brown rice Takju with different types of yeasts. The alcohol content by yeast was the highest in B (brown rice Takju produced by S. cerevisiae GRJ) at 14.3% and the titratable acidity was less than 0.6% in all ranges. When quality characteristics of agitated and static culture brown rice vinegar using them were compared, acidity of agitated culture vinegar recorded the highest level or 6.05% at 7 day of fermentation DV (brown rice vinegar produced by S. kluyveri DJ97) with the initial acidity of 1.0% and the initial pH of 3.9~4.0, and AV (brown rice vinegar produced by S. cerevisiae JK99), CV (brown rice vinegar produced by S. cerevisiae H9) and BV (brown rice vinegar produced by S. cerevisiae GRJ) recorded as 5.64, 5.55 and 5.32%, respectively. In addition, acidity of static culture vinegar increased continuously to 5.01~5.31% until the 14 day of fermentation and then tended to decrease slightly from the 16 day of fermentation. Difference in acidity and pH of brown rice vinegar according to types of yeast was not significant. Comparison of free amino acid of brown rice vinegar showed that for agitated culture brown rice vinegar, the content of total free amino acid was higher in the order of BV, DV, AV and CV and the content of essential amino acid was the highest in BV by recording over 1,000 ppm. The content of total free amino acid of static culture brown rice vinegar was higher than that of agitated culture vinegar in all ranges and especially static culture brown rice vinegar contained more serine, alanine, valine, isoleucine, leucine and γ-aminobutyric acid than agitated culture vinegar. In particular, γ-aminobutyric acid recorded over ten times higher level or 456.91~522.66 ppm. From these results, quality characteristics of brown rice vinegar was affected by acetic acid fermentation methods rather than types of yeast. However, as future aging process is expected to change flavor components and sensory characteristics, studies on various quality factors of vinegar are needed.
-In recent years, technology for storing a preliminary power or a surplus of photovoltaic energy is required. This technique, as well as store a preliminary energy and improve the reliability of the gird safety. This system can plan a efficient power generation through the flexibility of the power supply from the perspective of not only provider but also user. Accordingly, the realization of the smart grid can be expected. This paper proposes a hybrid PCS using a photovoltaic and a lithium-polymer battery with the characteristics of high density energy. The main energy source of a hybrid PCS is a photovoltaic, grid and the auxiliary energy source is a lithium-polymer battery. The operation of a proposed system in this paper is verified with simulation and experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.