In this paper, we propose a hydrodynamic scene separation method for wave propagation from video imagery using autoencoder. In the coastal area, image analysis methods such as particle tracking and optical flow with video imagery are usually applied to measure ocean waves owing to some difficulties of direct wave observation using sensors. However, external factors such as ambient light and weather conditions considerably hamper accurate wave analysis in coastal video imagery. The proposed method extracts hydrodynamic scenes by separating only the wave motions through minimizing the effect of ambient light during wave propagation. We have visually confirmed that the separation of hydrodynamic scenes is reasonably well extracted from the ambient light and backgrounds in the two videos datasets acquired from real beach and wave flume experiments. In addition, the latent representation of the original video imagery obtained through the latent representation learning by the variational autoencoder was dominantly determined by ambient light and backgrounds, while the hydrodynamic scenes of wave propagation independently expressed well regardless of the external factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.