In optical communications, differential phase shift keying (DPSK) provides a desired modulation format that offers high tolerance to nonlinear effects in high-speed transmissions. A DPSK demodulator converts the phase-coded signal into an intensity-coded signal at receivers. One demodulation scheme is called balanced detection and is based on a tunable delay line interferometer (DLI). Demodulation performances are determined by the phase delay generated by the DLI, while the phase delay is controlled by a tunable driving voltage on the DLI device. However, a problem in the dynamic adjustment of the control voltage prevents the application of DPSK demodulators. The receivers need to scan the whole control voltage range of the DLI and find the control voltage that maximizes the demodulation performance, but the scan-based method needs to undergo a very long searching time. In our work, we found that the relation between DLI control voltages and demodulation performance can be predicted rapidly by a feedforward neural network (FNN). In this paper, we propose a new method to quickly locate the best DLI control voltage based on an FNN. We also verify the proposed method in simulations and telecommunication systems, and the results show that the proposed method can significantly improve the efficiency of resolving the best demodulation voltages.