2012
DOI: 10.1063/1.4750244
|View full text |Cite
|
Sign up to set email alerts
|

1550 nm ErAs:In(Al)GaAs large area photoconductive emitters

Abstract: Influence of p-doping on the temperature dependence of InAs/GaAs quantum dot excited state radiative lifetime Appl. Phys. Lett. 101, 183108 (2012) Electrical excitation and detection of magnetic dynamics with impedance matching Appl. Phys. Lett. 101, 182402 (2012) Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy J. Appl. Phys. 112, 093101 (2012) Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitrid… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
37
0
2

Year Published

2013
2013
2021
2021

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 69 publications
(41 citation statements)
references
References 23 publications
2
37
0
2
Order By: Relevance
“…Since the ErAs layers act as deep recombination centers inside the superlattice, the resistivity and carrier lifetime of such superlattice structures can be controlled by the number and thickness of ErAs layers. [13][14][15][16] Although the high resistivity and short carrier lifetime characteristics of ErAs:InGaAs substrates can enable a more reliable device operation at telecommunication wavelengths, the radiation power of previously demonstrated ErAs:InGaAs photoconductive terahertz emitters operating at 1550 nm pump wavelengths has been limited by low quantum efficiency of conventional ultrafast photoconductors.In this work, we present a large-area photoconductive terahertz emitter based on a two-dimensional array of plasmonic nano-antennas fabricated on an ErAs:InGaAs substrate. The use of plasmonic nano-antennas allows absorption and concentration of the majority of incident pump photons in close proximity to the nano-antennas.…”
mentioning
confidence: 99%
“…Since the ErAs layers act as deep recombination centers inside the superlattice, the resistivity and carrier lifetime of such superlattice structures can be controlled by the number and thickness of ErAs layers. [13][14][15][16] Although the high resistivity and short carrier lifetime characteristics of ErAs:InGaAs substrates can enable a more reliable device operation at telecommunication wavelengths, the radiation power of previously demonstrated ErAs:InGaAs photoconductive terahertz emitters operating at 1550 nm pump wavelengths has been limited by low quantum efficiency of conventional ultrafast photoconductors.In this work, we present a large-area photoconductive terahertz emitter based on a two-dimensional array of plasmonic nano-antennas fabricated on an ErAs:InGaAs substrate. The use of plasmonic nano-antennas allows absorption and concentration of the majority of incident pump photons in close proximity to the nano-antennas.…”
mentioning
confidence: 99%
“…Although in small bandgap materials, like InGaAs, heating by elevated bias voltages or optical fluxes can result in further heating by activation of intrinsic carriers [25,26], this effect is not relevant in the devices reported here as indicated by the absence of runaway effects at certain power and by the fact that the reduction in amplitude is more severe for the receiver than for the emitter. If a further significant carrier activation, due to its bias the emitter should be affected more than the receiver is.…”
Section: Discussionmentioning
confidence: 82%
“…Первый применяют для создания источников ТГц излучения под оптическую накачку фемтосекундного лазера (800 нм), а второй позволяет работать с более длинноволновой оптической накачкой в диапазоне 1.0−1.6 мкм [6,7]. Поскольку для изготовления антенны требуется высокое сопротивление фотопроводящего материала, а в InGaAs оно изначально ниже, чем в LT-GaAs, полупроводник эпитаксиально выращивают при низкой температуре и легируют бе-риллием [5] или эрбием [8], применяют ионную им-плантацию [9,10], а также используют сверхрешеточ-ные структуры на основе последовательности слоев In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As с вкраплением островков ErAs [11] и легированного бериллием In 0.53 Ga 0.47 As [12]. ФА на основе LT-GaAs может иметь довольно широкий спектр ТГц излучения вплоть до 5.0 ТГц с максиму-мом генерации излучения в области 1.0 ТГц [13,14], в то время как ФА на основе InGaAs, легированного бериллием, показывают более интенсивную генерацию ТГц излучения, особенно при оптической накачке дву-мя лазерами с близкими частотами [6,15].…”
Section: Introductionunclassified
“…Прежде всего это связано с рассеянием носи-телей заряда в фотопроводящем слое и подложке [16]. Для увеличения эффективности применяются различные подходы: расширение активной области ФА для умень-шения электронного экранирования и вероятности теп-лового пробоя [8,16], использование плазмонных нано-антенн, формируемых на поверхности фотопроводящего слоя [9], создание трехмерных плазмонных контактов с высоким аспектным соотношением [17] и т. д.…”
Section: Introductionunclassified