In the last sixty years the understanding of the mechanisms of alternating current electroluminescence (ACEL) in transition metal-doped zinc sulfides, in particular ZnS:Cu particles has been the goal of all workers in the field. An in depth understanding of the crystallography and uncommon hemimorphic nature of these particles has lead to some understanding as to mechanism of light emission under an alternating current field. Hydrochloric acid etching of ZnS:Cu particles has allowed an intimate study of the hemimorphic nature and high density of planar stacking faults present in the particles that are critical for ACEL to occur. This work using complimentary field emission scanning electron microscopy and digital optical microscopy shows that the alignment of the planar stacking faults of these particles relative to the applied electric field is critical for light emission. Perpendicular alignment of the stacking faults results in no emission of light; as the alignment gradually approaches parallel emission increases and at parallel reaches a maximum. Thus, for devices using these materials alignment of the particles with the electric field is most important to maximize light output.