In this study, 1R,2R-dicamphanoyl-3,3-dimethydihydropyrano[2,3-c]xanthen-7(1H)-one (DCX) derivatives were designed and synthesized as novel anti-HIV agents against both wild-type and nonnucleoside reverse transcriptase (RT) inhibitor-resistant HIV-1 (RTMDR-1) strains. Twenty-four DCX analogs (6-29) were synthesized and evaluated against the non-drug-resistant HIV-1 NL4-3 strain, and selected analogs were also screened for their ability to inhibit the RTMDR-1 strain. Compared with the control 2-ethyl-3′,4′-di-O-(-)-camphanoyl-2′,2′-dimethyldihydropyrano[2,3-f]chromone (2-EDCP, 2), one of the best anti-HIV coumarin derivatives in our prior study, three DCX compounds (7, 12, and 22) showed better activity against both HIV strains with an EC50 range of 0.062 – 0.081 μM, and five additional compounds (8, 11, 16, 18, and 21) exhibited comparable anti-HIV potency. Six DCX analogs (7, 11-12, 18, and 21-22) also showed enhanced selectivity index (SI) values in comparison to the control. Structure-activity relationship (SAR) information suggested that the extended conjugated system of the pyranoxanthone skeleton facilitates the interaction of the small DCX molecule within the viral binding pocket, consequently leading to enhanced anti-HIV activity and selectivity. Compared to DCP compounds, DCX analogs are a more promising new class of anti-HIV agents.