Organic photovoltaic materials are of interest for their future applications in solar cells. Compared to inorganic or dye-sensitized solar cells, organic photovoltaic (OPV) cells offer a huge potential for low-cost large-area solar cells because of their low material consumption per area and easy processing. In the last few years, there have seen an unprecedented growth of interest in OPVs with power conversion efficiency of over 5% attainable. However, OPV's performance is limited by the narrow light absorption, poor charge carries mobility, and low stability of organic materials, all of which confine its large-scale commercial applications. This review will develop a discussion on the OPV device configuration and operational mechanism after an introduction of the general features of OPV materials. Subsequently, the typical progresses in materials development and performance evolution in recent years will be summarized. The future challenges and prospects faced by organic photovoltaics will be discussed. Finally, the innovative strategy on research of molecular design and device optimization will be suggested with the aim for practical application.