2016 IEEE International Solid-State Circuits Conference (ISSCC) 2016
DOI: 10.1109/isscc.2016.7417906
|View full text |Cite
|
Sign up to set email alerts
|

3.3 A 25Gb/s multistandard serial link transceiver for 50dB-loss copper cable in 28nm CMOS

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
6
3

Relationship

1
8

Authors

Journals

citations
Cited by 32 publications
(5 citation statements)
references
References 2 publications
0
5
0
Order By: Relevance
“…However, the interconnect partially takes advantage of the technology scaling, because faster transistors enable a better circuit to overcome the increased channel loss. Figure 11A shows a survey from the state-of-the-art published works ( Tamura et al, 2001 ; Haycock & Mooney, 2001 ; Tanaka et al, 2002 ; Lee et al, 2003 , 2004 ; Krishna et al, 2005 ; Landman et al, 2005 ; Casper et al, 2006 ; Palermo, Emami-Neyestanak & Horowitz, 2008 ; Kim et al, 2008 ; Lee, Chen & Wang, 2008 ; Amamiya et al, 2009 ; Chen et al, 2011 ; Takemoto et al, 2012 ; Raghavan et al, 2013 ; Navid et al, 2014 ; Zhang et al, 2015 ; Upadhyaya et al, 2015 ; Norimatsu et al, 2016 ; Gopalakrishnan et al, 2016 ; Shibasaki et al, 2016 ; Peng et al, 2017 ; Han et al, 2017 ; Upadhyaya et al, 2018 ; Wang et al, 2018 ; Depaoli et al, 2018 ; Tang et al, 2018 ; LaCroix et al, 2019 ; Pisati et al, 2019 ; Ali et al, 2019 , 2020 ; Im et al, 2020 ; Yoo et al, 2020 ), where we can confirm the correlation between the technology node and the data rate. On the other hand, however, overcoming the increased channel loss has become more and more expensive as the loss is going worse as the bandwidth increases; the equalization circuits consume too much power to compensate the loss, which makes people hesitant to increase the bandwidth.…”
Section: Interconnectmentioning
confidence: 99%
“…However, the interconnect partially takes advantage of the technology scaling, because faster transistors enable a better circuit to overcome the increased channel loss. Figure 11A shows a survey from the state-of-the-art published works ( Tamura et al, 2001 ; Haycock & Mooney, 2001 ; Tanaka et al, 2002 ; Lee et al, 2003 , 2004 ; Krishna et al, 2005 ; Landman et al, 2005 ; Casper et al, 2006 ; Palermo, Emami-Neyestanak & Horowitz, 2008 ; Kim et al, 2008 ; Lee, Chen & Wang, 2008 ; Amamiya et al, 2009 ; Chen et al, 2011 ; Takemoto et al, 2012 ; Raghavan et al, 2013 ; Navid et al, 2014 ; Zhang et al, 2015 ; Upadhyaya et al, 2015 ; Norimatsu et al, 2016 ; Gopalakrishnan et al, 2016 ; Shibasaki et al, 2016 ; Peng et al, 2017 ; Han et al, 2017 ; Upadhyaya et al, 2018 ; Wang et al, 2018 ; Depaoli et al, 2018 ; Tang et al, 2018 ; LaCroix et al, 2019 ; Pisati et al, 2019 ; Ali et al, 2019 , 2020 ; Im et al, 2020 ; Yoo et al, 2020 ), where we can confirm the correlation between the technology node and the data rate. On the other hand, however, overcoming the increased channel loss has become more and more expensive as the loss is going worse as the bandwidth increases; the equalization circuits consume too much power to compensate the loss, which makes people hesitant to increase the bandwidth.…”
Section: Interconnectmentioning
confidence: 99%
“…The proliferation of copper-based links in this area can be mainly attributed to the advancements of CMOS technologies and circuit techniques. By utilizing advanced CMOS technologies and equalization techniques, operations at higher than 25 Gb/s even in severe loss conditions of more than 40 dB were achieved [ 9 , 10 , 11 ]. Recently, circuit designers attempt to overcome the limitations of copper by introducing a pulse-amplitude-modulation (PAM) signaling that can enhance the effective data rate for the same loss condition as the conventional binary signaling [ 12 , 13 , 14 , 15 ].…”
Section: Silicon Photonics For High-speed Data Communicationsmentioning
confidence: 99%
“…Comparators, used as samplers or slicers in decision feedback equalisers (DFEs), face the challenge of sensing signals at data rates above 20 Gb/s with limited input signal swing. Considering the aggregated losses of low-pass channels, which can reach up to 40 dB, signal amplitude at comparator input could be as low as 20 mV [1]. As a result, comparator sensitivity specifications become limited by the accuracy of the offset correction scheme.…”
Section: Introductionmentioning
confidence: 99%