Quantum defect (QD) is an important issue that demands prompt attention in high-power fiber laser. Large QD may aggravate the thermal load in the laser, which would impact the frequency and amplitude noise, mode stability and threaten the security of high-power laser system. Here, we propose and demonstrate a cladding-pumped Raman fiber laser (RFL) with QD <1%. Using the Raman gain of the boson peak in a phosphorusdoped fiber to enable the cladding pump, the QD is reduced to as low as 0.78% with a 23.7 W output power. To our knowledge, this is the lowest QD ever reported in claddingpumped RFL. Furthermore, the output power can be scaled to 47.7 W with a QD of 1.29%. This work not only offers a preliminary platform for the realization of high-power low-QD fiber laser, but also proves low-QD fiber laser's great potential in power scaling.