This study presents a high-fidelity and high-efficiency digital class-D audio power amplifier (CDA), which consists of digital and analog modules. To realize a compatible digital input, a fully digital audio digital-to-analog converter (DAC) is implemented on MATLAB and Xilinx System Generator, which consists of a 16x interpolation filter, a fourth-order four-bit quantized delta-sigma (ΔΣ) modulator, and a uniform-sampling pulse width modulator. The CDA utilizes the closed-loop negative feedback and loop-filtering technologies to minimize distortion. The audio DAC, which is based on a field-programmable gate array, consumes 0.128 W and uses 7100 LUTs, which achieves 11.2% of the resource utilization rate. The analog module is fabricated in a 0.18 µm BCD technology. The postlayout simulation results show that the CDA delivers an output power of 1 W with 93.3% efficiency to a 4 Ω speaker and achieves 0.0138% of the total harmonic distortion (THD) with a transient noise for a 1 kHz input sinusoidal test tone and 3.6 V supply. The output power reaches up to 2.73 W for 1% THD (with transient noise). The proposed amplifier occupies an active area of 1 mm2.