This paper reports a review about microelectromechanical system (MEMS) microphones. The focus of this review is to identify the issues in MEMS microphone designs and thoroughly discuss the state-of-the-art solutions that have been presented by the researchers to improve performance. Considerable research work has been carried out in capacitive MEMS microphones, and this field has attracted the research community because these designs have high sensitivity, flat frequency response, and low noise level. A detailed overview of the omnidirectional microphones used in the applications of an audio frequency range has been presented. Since the microphone membrane is made of a thin film, it has residual stress that degrades the microphone performance. An in-depth detailed review of research articles containing solutions to relieve these stresses has been presented. The comparative analysis of fabrication processes of single- and dual-chip omnidirectional microphones, in which the membranes are made up of single-crystal silicon, polysilicon, and silicon nitride, has been done, and articles containing the improved performance in these two fabrication processes have been explained. This review will serve as a starting guide for new researchers in the field of capacitive MEMS microphones.