Mining high utility itemsets is one of the most important research issues in data mining owing to its ability to consider nonbinary frequency values of items in transactions and different profit values for each item. Although a number of relevant approaches have been proposed in recent years, they incur the problem of producing a large number of candidate itemsets for high utility itemsets. In this paper, the authors propose an efficient algorithm, namely BAHUI (Bitmap-based Algorithm for High Utility Itemsets), for mining high utility itemsets with bitmap database representation. In BAHUI, bitmap is used vertically and horizontally. On the one hand, BAHUI exploits a divide-and-conquer approach to visit itemset lattice by using bitmap vertically. On the other hand, BAHUI horizontally uses bitmap to calculate the real utilities of candidates. Using bitmap compression scheme, BAHUI reduces the memory usage and makes use of the efficient bitwise operation. Furthermore, BAHUI only records candidate high utility itemsets with maximal length, and inherits the pruning and searching strategies from maximal itemset mining problem. Extensive experimental results show that the BAHUI algorithm is both efficient and scalable.