This paper describes the design of a 10 GHz phase-locked loop (PLL) for a 40 Gb/s serial link transmitter (TX). A two-stage ring oscillator is used to provide a four-phase, 10 GHz clock for a quarter-rate TX. Several analyses and verification techniques, ranging from the clocking architectures for a 40 Gb/s TX to oscillation failures in a two-stage ring oscillator, are addressed in this paper. A tri-state-inverterbased frequency-divider and an AC-coupled clock-buffer are used for high-speed operations with minimal power and area overheads. The proposed 10 GHz PLL fabricated in the 65 nm CMOS technology occupies an active area of 0.009 mm 2 with an integrated-RMS-jitter of 414 fs from 10 kHz to 100 MHz while consuming 7.6 mW from a 1.2-V supply. The resulting figure-ofmerit is -238.8 dB, which surpasses that of the state-of-the-art ring-PLLs by 4 dB. Index Terms-CMOS, jitter, phase-locked loop (PLL), ring oscillator, serial link transmitter.