2013
DOI: 10.1039/c3cy20856g
|View full text |Cite
|
Sign up to set email alerts
|

A benign synthesis of 2-amino-4H-chromene in aqueous medium using hydrotalcite (HT) as a heterogeneous base catalyst

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
26
0

Year Published

2014
2014
2024
2024

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 83 publications
(27 citation statements)
references
References 52 publications
1
26
0
Order By: Relevance
“…Several synthetic methods have been widely applied for synthesis of pyran-based heterocyclic compounds, using many homogeneous or heterogeneous organic, inorganic, and nanomaterial catalysts, for example hexamethylenetetramine (HMT) [40], heteropolyacid [41], diammonium hydrogen phosphate [42], DBU [43], piperidine [44][45][46][47], tetrabutylammonium bromide (TBAB) [48], ionic liquids [49], morpholine [50], 4-(dimethylamino)pyridine (DMAP) [51], urea [52], 3-hydroxypropanaminium acetate (HPAA) [53], N-propylpiperazine sodium n-propionate (SBPPSP) [54], silica gel [55], sulfonic acid-functionalized silica [ [60], meglumine [61], I 2 /K 2 CO 3 [62], cetyltrimethylammonium bromide (CTABr) [63], nano-sized MgO [64], nano-structured Na 2 CaP 2 O 7 [65], NaHCO 3 [66], Na 2 CO 3 [67], triazine-functionalized ordered mesoporous organosilica [68], potassium phosphate tribasic trihydrate [69], Mg/Al hydrotalcite [70], Amberlyst A21 [71], DABCO [72], CeO 2 /CaO nanocomposite oxide [73], triton B [74], tetrabutylammonium chloride (TBAC) [75], nano-eggshell powder [76], basic alumina [77], [bmim]OH [78,79], LiBr [80], glycine [81], silica nanoparticles [82], ionic liquid choline chlorid...…”
Section: Introductionmentioning
confidence: 99%
“…Several synthetic methods have been widely applied for synthesis of pyran-based heterocyclic compounds, using many homogeneous or heterogeneous organic, inorganic, and nanomaterial catalysts, for example hexamethylenetetramine (HMT) [40], heteropolyacid [41], diammonium hydrogen phosphate [42], DBU [43], piperidine [44][45][46][47], tetrabutylammonium bromide (TBAB) [48], ionic liquids [49], morpholine [50], 4-(dimethylamino)pyridine (DMAP) [51], urea [52], 3-hydroxypropanaminium acetate (HPAA) [53], N-propylpiperazine sodium n-propionate (SBPPSP) [54], silica gel [55], sulfonic acid-functionalized silica [ [60], meglumine [61], I 2 /K 2 CO 3 [62], cetyltrimethylammonium bromide (CTABr) [63], nano-sized MgO [64], nano-structured Na 2 CaP 2 O 7 [65], NaHCO 3 [66], Na 2 CO 3 [67], triazine-functionalized ordered mesoporous organosilica [68], potassium phosphate tribasic trihydrate [69], Mg/Al hydrotalcite [70], Amberlyst A21 [71], DABCO [72], CeO 2 /CaO nanocomposite oxide [73], triton B [74], tetrabutylammonium chloride (TBAC) [75], nano-eggshell powder [76], basic alumina [77], [bmim]OH [78,79], LiBr [80], glycine [81], silica nanoparticles [82], ionic liquid choline chlorid...…”
Section: Introductionmentioning
confidence: 99%
“…In continuation of our efforts for synthesis of organic compounds using sustainable protocols (Gawande et al, 2013a,b,c,d, 2014a,b,c; Kale et al, 2013; Sharma et al, 2015), in this work, we have successfully developed a mild and ecofriendly synthesis of benzyl phosphonates using PEG/KI as a catalytic system. In this protocol, PEG not only acts as a reaction medium but also as a PTC.…”
Section: Resultsmentioning
confidence: 96%
“…According to the literature [48,49], 2-benzylidenemalononitrile, containing the electron-poor C_C double bond, is formed by Knoevenagel addition of malononitrile to benzaldehyde in the presence neutral ionic liquid OAc as catalyst. Then, 2-benzylidenemalononitrile has been attacked by resorcinol in the presence of neutral ionic liquid OAc, which leads to the 2-amino-7-hydroxy-4-phenyl-4H-chromene-3-carbonitrile.…”
Section: Determination Of Model Adequacymentioning
confidence: 99%