Intestinal ischemia–reperfusion
(IR) injury is a severe
clinical condition, and unraveling its pathophysiology is crucial
to improve therapeutic strategies and reduce the high morbidity and
mortality rates. Here, we studied the dynamic proteome and phosphoproteome
in the human intestine during ischemia and reperfusion, using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis to gain
quantitative information of thousands of proteins and phosphorylation
sites, as well as mass spectrometry imaging (MSI) to obtain spatial
information. We identified a significant decrease in abundance of
proteins related to intestinal absorption, microvillus, and cell junction,
whereas proteins involved in innate immunity, in particular the complement
cascade, and extracellular matrix organization increased in abundance
after IR. Differentially phosphorylated proteins were involved in
RNA splicing events and cytoskeletal and cell junction organization.
In addition, our analysis points to mitogen-activated protein kinase
(MAPK) and cyclin-dependent kinase (CDK) families to be active kinases
during IR. Finally, matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) MSI presented peptide alterations in abundance and distribution,
which resulted, in combination with Fourier-transform ion cyclotron
resonance (FTICR) MSI and LC-MS/MS, in the annotation of proteins
related to RNA splicing, the complement cascade, and extracellular
matrix organization. This study expanded our understanding of the
molecular changes that occur during IR in the human intestine and
highlights the value of the complementary use of different MS-based
methodologies.