The stable and efficient operation of the activated sludge sequencing batch reactor (ASSBR) in heavy oil refineries has become an urgent necessity in wastewater biotreatment. Hence, we constructed a green and efficient solid bioaugmentation agent (SBA) to enhance the resistance of the reactor to loading shock. The impact of bioaugmentation on the performance and microbial community dynamics under three patterns of heavy oil refinery wastewater (HORW) loading shock (higher COD, higher toxicity, and higher flow rate) was investigated on an industrial-scale ASSBR. Results showed that the optimal SBA formulation was a ratio and addition of mixed bacteria Bacillus subtillis and Brucella sp., of 3:1 and 3.0%, respectively, and a glucose concentration of 5.0 mg/L. The shock resistance of ASSBR was gradually enhanced and normal performance was restored within 6–7 days by the addition of 0.2% SBA. Additionally, the removal efficiency of chemical oxygen demand and total nitrogen reached 86% and 55%, respectively. Furthermore, we found that Burkholderiaceae (12.9%) was replaced by Pseudomonadaceae (17.1%) in wastewater, and Lachnospiraceae (25.4%) in activated sludge was replaced by Prevotellaceae (35.3%), indicating that the impact of different shocks effectively accelerated the evolution of microbial communities and formed their own unique dominant bacterial families.