An amperometric ethanol biosensor was fabricated by integration of alcohol dehydrogenase (ADH) with meldolas blue (MB)/ordered mesoporous carbon (OMC) composite modified glassy carbon electrode (MB/OMC/GCE). The MB/OMC/GCE was highly sensitive for nicotinamide adenine dinucleotide (NADH) measurement (9.1 AE 0.25 mA/ mM) and gave a low detection limit of 0.21 AE 0.02 mM. The ethanol biosensor exhibited a wide linear range up to 6 mM with a lower detection limit of 19.1 AE 0.58 mM as well as a high sensitivity of 34.58 AE 2.43 nA/mM without suffering any interference from some common electroactive compounds.
We have developed a new sparse-spike deconvolution (SSD) method based on Toeplitz-sparse matrix factorization (TSMF), a bilinear decomposition of a matrix into the product of a Toeplitz matrix and a sparse matrix, to address the problems of lateral continuity, effects of noise, and wavelet estimation error in SSD. Assuming the convolution model, a constant source wavelet, and the sparse reflectivity, a seismic profile can be considered as a matrix that is the product of a Toeplitz wavelet matrix and a sparse reflectivity matrix. Thus, we have developed an algorithm of TSMF to simultaneously deconvolve the seismic matrix into a wavelet matrix and a reflectivity matrix by alternatively solving two inversion subproblems related to the Toeplitz wavelet matrix and sparse reflectivity matrix, respectively. Because the seismic wavelet is usually compact and smooth, the fused Lasso was used to constrain the elements in the Toeplitz wavelet matrix. Moreover, due to the limitations of computer memory, large seismic data sets were divided into blocks, and the average of the source wavelets deconvolved from these blocks via TSMF-based SSD was used as the final estimation of the source wavelet for all blocks to deconvolve the reflectivity; thus, the lateral continuity of the seismic data can be maintained. The advantages of the proposed deconvolution method include using multiple traces to reduce the effect of random noise, tolerance to errors in the initial wavelet estimation, and the ability to preserve the complex structure of the seismic data without using any lateral constraints. Our tests on the synthetic seismic data from the Marmousi2 model and a section of field seismic data demonstrate that the proposed method can effectively derive the wavelet and reflectivity simultaneously from band-limited data with appropriate lateral coherence, even when the seismic data are contaminated by noise and the initial wavelet estimation is inaccurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.