2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) 2019
DOI: 10.1109/mwscas.2019.8884989
|View full text |Cite
|
Sign up to set email alerts
|

A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 18 publications
(10 citation statements)
references
References 14 publications
0
8
0
2
Order By: Relevance
“…Moreover, an FPGA-system level comparison between the proposed systems and other seizure detection systems is depicted in Table 8. The highest achieved sensitivity by the proposed designs is higher than that in [20], [21], [23], [24], and [25] and approximately equals to the sensitivity achieved in [21]. No DSPs are utilized in the proposed design in opposition to [21], and [23].…”
Section: Comparison With Prior Workmentioning
confidence: 91%
“…Moreover, an FPGA-system level comparison between the proposed systems and other seizure detection systems is depicted in Table 8. The highest achieved sensitivity by the proposed designs is higher than that in [20], [21], [23], [24], and [25] and approximately equals to the sensitivity achieved in [21]. No DSPs are utilized in the proposed design in opposition to [21], and [23].…”
Section: Comparison With Prior Workmentioning
confidence: 91%
“…An SVM classifier was used, which along with deep learning techniques is wellestablished in conventional seizure detection using electroencephalography signals. [101][102] The authors investigated which signals were needed to achieve the highest accuracy, with temperature, EMG, PPG, and EDA providing the 98.2 % accuracy and 93.7 % sensitivity. Using only the temperature and EMG signals, however, achieved near-identical results of 98.1 % accuracy and 91.6 % sensitivity.…”
Section: Rehabilitation and Activity Assessmentmentioning
confidence: 99%
“…Dukungan mesin vektor (SVM) dianggap salah satu algoritma pembelajaran yang paling kuat dan digunakan untuk berbagai aplikasi dunia nyata. SVM algoritma pembelajaran yang diawasi yang memiliki banyak aplikasi di bidangnya biofotonik, pengenalan pola, dan klasifikasi paling populer (Elgammal et al, 2019). Awalnya, dikembangkan untuk dua klasifikasi kelas tetapi seseorang juga dapat menerapkannya pada masalah yang melibatkan banyak kelas dengan menggunakan strategi satu lawan satu dan satu lawan semua.…”
Section: Support Vector Machine (Svm)unclassified
“…Di mana w adalah normal untuk hyperplane, Φ (x) adalah pemetaan fungsi yang digunakan untuk memetakan setiap vektor masukan ke ruang fitur dan b adalah biasnya. Masalah optimasi menemukan hyperplane dengan margin terbesar dirumuskan sebagai berikut (Elgammal et al, 2019):…”
Section: Support Vector Machine (Svm)unclassified