2006
DOI: 10.1016/j.ijpsycho.2006.05.009
|View full text |Cite
|
Sign up to set email alerts
|

A comparison of methods for ERP assessment in a P300-based GKT

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
56
0
4

Year Published

2009
2009
2023
2023

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 97 publications
(64 citation statements)
references
References 24 publications
4
56
0
4
Order By: Relevance
“…Some studies have used mock crimes or virtual mock crimes (Abootalebi et al 2006;Hahm et al 2009). Some have applied various other knowledge-imparting procedures (Gamer and Berti 2009;Lefebvre et al 2007Lefebvre et al , 2009Meijer et al 2007).…”
Section: Replications Of Brain Fingerprinting Science In Other Indepmentioning
confidence: 99%
“…Some studies have used mock crimes or virtual mock crimes (Abootalebi et al 2006;Hahm et al 2009). Some have applied various other knowledge-imparting procedures (Gamer and Berti 2009;Lefebvre et al 2007Lefebvre et al , 2009Meijer et al 2007).…”
Section: Replications Of Brain Fingerprinting Science In Other Indepmentioning
confidence: 99%
“…Por otro lado, conviene no olvidar que los culpables pueden utilizar contramedidas para falsificar o dificultar la detección de la P300 (Rosenfeld et al, 2004;Abootalebi, Moradi y Khalilzadeh, 2006;Mertens y Allen, 2008), y que como vimos anteriormente disminuye significativamente la capacidad de detección. Las contramedidas utilizadas para falsear los resultados pueden ser de naturaleza física (morderse la lengua, apretar los puños o la mandíbula, etc.)…”
Section: Falsos Negativosunclassified
“…The applications of wavelets to ERPs are broad ranging, including joint time-frequency analysis of ERPs (Samar et al, 1992), artifact removal (Jiang et al, 2007) and event detection (Demiralp et al, 1999;Samar et al, 1995). Furthermore, features derived from wavelet coefficients (Merzagora et al, 2006;Trejo and Shensa, 1999) perform well in preprocessing (Kalayci et al, 1994) stages of classification problems using statistical learning algorithms (Abootalebi et al, 2006;Browne and Cutmore, 2002).…”
Section: Introductionmentioning
confidence: 99%