The integration of computer-based technologies interacting with industrial machines or home appliances through an interconnected network, for teleoperation, workflow control, switching to autonomous mode, or collecting data automatically using a variety of sensors, is known as Internet of Things (IoT). When applied inside an industrial context, it is possible to immediately benefit from the analytics obtained, contributing to process optimization, machine health, the safety of workers and asset management. IoT can assist real-time platforms in remotely monitoring and operating a complex production system with minimal intervention of humans. Hence it can be beneficial for hazardous industries, such as mining, by increasing the safety of personnel and equipment while reducing operation costs. An ideal smart automated mine could potentially be achievable by gradually taking advantage of IoT. Currently, different sensors are used in mine-related activities, such as geophones in exploration and blast control, piezometers in dewatering and toxic gas detectors in working frontlines. However, a fully integrated automated system is challenging in practice due to infrastructural limitations in communication, data management and storage. Moreover, the tendency of mining companies to continue with traditional methods instead of relying on untested novel techniques decelerates this progress. In this study, the adaptability of the mining industry to IoT systems and its current development is reviewed. Significant challenges of this progress are investigated and recommendations to develop a comprehensive model suited for different mining sections such as exploration, operation and safety considering flexible technologies such as Wireless Sensor Networks and the introduction of Global Data Management.