2004
DOI: 10.1007/978-3-540-24595-7_29
|View full text |Cite
|
Sign up to set email alerts
|

A Constrained, Force-Directed Layout Algorithm for Biological Pathways

Abstract: Abstract. We present a new elegant algorithm for layout of biological signaling pathways. It uses a force-directed layout scheme, taking into account directional and regional constraints enforced by different molecular interaction types and subcellular locations in a cell. The algorithm has been successfully implemented as part of a pathway integration and analysis toolkit named Patika, and results with respect to computational complexity and quality of the layout have been found satisfactory.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0

Year Published

2005
2005
2023
2023

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 15 publications
(12 citation statements)
references
References 6 publications
0
12
0
Order By: Relevance
“…The straightforward approaches do not adequately support layers and groups [16]. Several attempts have been made to extend force-directed placement to accommodate grouping, for example Fruchterman and Reingold [17] use repulsive walls to contain nodes within an external boundary and Genc and Dogrusoz [18] use mobile internal walls to separate the graph into compartments. However, these methods suffer from fragility.…”
Section: Related Workmentioning
confidence: 99%
“…The straightforward approaches do not adequately support layers and groups [16]. Several attempts have been made to extend force-directed placement to accommodate grouping, for example Fruchterman and Reingold [17] use repulsive walls to contain nodes within an external boundary and Genc and Dogrusoz [18] use mobile internal walls to separate the graph into compartments. However, these methods suffer from fragility.…”
Section: Related Workmentioning
confidence: 99%
“…Force layout techniques [see Di Battista et al (1999, chap. 10) for a general exposition and for a constrained version suitable for biological pathways, see Genc and Dogrusoz (2004)] view the network as a physical system, whose edges are connected by springs, with attractive forces applied to adjacent vertices and repulsive forces to all pairs of vertices. These algorithms seek two-dimensional layouts in which adjacent vertices are placed close to each other exhibiting small edge lengths, while vertices remain well separated.…”
Section: Network Visualizationmentioning
confidence: 99%
“…algorithm CompoundLayout() (1) call Initialization() (2) set phase to 1 (3) if layout type is incremental then (4) increment phase to 3 (5) while phase ≤ 3 do (6) set step to 1, error to 0 (7) while (step < maxIterCount(phase) and error > errorThreshold(phase)) or !allTreesGrown do (8) call ApplySpringForces() (9) call ApplyRepulsionForces() (10) if phase = 1 then (11) call ApplyGravitationForces() (12) call ApplyRelativityForces() (13) call CalcNodePositionsAndSizes() (14) call UpdateCompartmentBounds() (15) if phase = 2 and !allTreesGrown and step % growStep = 0 then (16) call GrowTreesOneLevel() (17) increment step by 1 (18) increment phase by 1 A quick analysis reveals that the running time of layout is O(k · n 2 ) where n is the total number of nodes in the compound pathway, and k is the number of iterations required to reach an energy minimal state.…”
Section: Phasementioning
confidence: 99%
“…A layout algorithm for signaling pathways was proposed and implemented within Patika earlier [9]. However neither this algorithm nor any of the previously proposed ones address advanced pathway representations including nested drawings, intergraph relations, and application-specific constraints such as compartmental constraints at the same time.…”
Section: Introductionmentioning
confidence: 99%