A strategy for the direct functionalization strategy of inertial dialkyl phosphonates with hydroxy compounds to afford diverse mixed phosphonates with good yields and functional-group tolerance has been developed. Mechanistic investigations involving both NMR studies and DFT studies suggest that an unprecedented highly reactive P species (phosphoryl pyridin-1-ium salt), a key intermediate for this new synthetic transformation, is generated in situ from dialkyl phosphonate in the presence of Tf O/pyridine.