We prove that ideal sub-Riemannian manifolds (i.e., admitting no non-trivial abnormal minimizers) support interpolation inequalities for optimal transport. A key role is played by sub-Riemannian Jacobi fields and distortion coefficients, whose properties are remarkably different with respect to the Riemannian case. As a byproduct, we characterize the cut locus as the set of points where the squared sub-Riemannian distance fails to be semiconvex, answering to a question raised by Figalli and Rifford in [FR10].As an application, we deduce sharp and intrinsic Borell-Brascamp-Lieb and geodesic Brunn-Minkowski inequalities in the aforementioned setting. For the case of the Heisenberg group, we recover in an intrinsic way the results recently obtained by Balogh, Kristály and Sipos in [BKS18], and we extend them to the class of generalized H-type Carnot groups. Our results do not require the distribution to have constant rank, yielding for the particular case of the Grushin plane a sharp measure contraction property and a sharp Brunn-Minkowski inequality.