The objective of the present study was to evaluate in vitro, using Chinese hamster ovary (CHO-K1) cells, the genotoxicity of genipin, a naturally occurring crosslinking agent. Glutaraldehyde, the most commonly used crosslinking agent for biologic tissue fixation, was employed as a reference chemical. The selected procedures for this evaluation were the micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix). Before starting the genotoxicity assays, the maximum noncytotoxic amounts of glutaraldehyde and genipin were determined using the MTT assay. The results obtained in the MTT assay revealed that the cytotoxicity of genipin was significantly lower than that of glutaraldehyde with or without S9 mix. The frequencies of MN observed in the cases drugged with varying concentrations of glutaraldehyde or genipin were not statistically different from those seen in the negative controls (blank) in the presence or absence of S9 mix. However, it was noted that glutaraldehyde significantly inhibited the cell-cycle progression while the cells drugged with genipin did not result in cell-cycle delay. In the SCE assay, the numbers of SCE per cell observed in the cases drugged with varying concentrations of glutaraldehyde were significantly greater than those found in the negative controls with or without S9 mix. Nevertheless, these numbers were still low compared to the numbers of SCE induced by the strong mutagens used as our positive control substances. This suggests that glutaraldehyde may produce a weakly clastogenic response in CHO-K1 cells. In contrast, the numbers of SCE per cell obtained in the cases drugged with genipin were comparable to those observed in the negative controls in those that were except drugged with the highest dose (50 ppm). This suggests that genipin does not cause clastogenic response in CHO-K1 cells provided its concentration is lower than 50 ppm. In conclusion, as far as cytotoxicity and genotoxicity are concerned, genipin is a promising crosslinking agent for biologic tissue fixation.