A novel asymmetrical current-based sensing scheme for 1T1C FRAM is proposed, in which the two input transistors are not the same size and a feedback NMOS is added at the reference side of the sense amplifier. Compared with the conventional symmetrical scheme in Ref. [8], the proposed scheme increases the sense margin of the readout current by 53.9% and decreases the sensing power consumption by 14.1%, at the cost of an additional 7.89% area of the sensing scheme. An experimental FRAM prototype utilizing the proposed asymmetrical scheme is implemented in a 0.35 m three metal process, in which the function of the prototype is verified.