2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) 2018
DOI: 10.1109/cistem.2018.8613538
|View full text |Cite
|
Sign up to set email alerts
|

A Deep Learning Based on Sparse Auto-Encoder with MCSA for Broken Rotor Bar Fault Detection and Diagnosis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
7
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(10 citation statements)
references
References 9 publications
0
7
0
3
Order By: Relevance
“…The basis for the operation of diagnostic systems based on neural networks (NNs), applied also for induction motor (IM) fault detection and classification, are analytical methods. Therefore, the input information for such systems is the result of extracting symptoms from chosen diagnostic signals using analytical methods, for example: FFT [24,25], WT [26], HHT [27], etc.…”
Section: Introductionmentioning
confidence: 99%
See 3 more Smart Citations
“…The basis for the operation of diagnostic systems based on neural networks (NNs), applied also for induction motor (IM) fault detection and classification, are analytical methods. Therefore, the input information for such systems is the result of extracting symptoms from chosen diagnostic signals using analytical methods, for example: FFT [24,25], WT [26], HHT [27], etc.…”
Section: Introductionmentioning
confidence: 99%
“…For the most part, they are associated with the analysis of mechanical damage to the IM [35,36] or mechanical system components [37,38]. A small number of works related to electrical damage of IM mainly concern rotor damages [24,27]. Most DNN-based systems use vibration measurements [39][40][41], less frequently stator currents [42][43][44] and voltages [45].…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Diversas outras técnicas de Inteligência Computacional podem ser implementadas para detecção de falhas em processos industriais. Como o apresentado por Abdellatif et al (2018) que utiliza a saída de dois autoencoders como entradas de uma rede perceptron multicamadas (MLP) para detecção de barras quebradas em motores trifásicos de indução. No trabalho apresentado por Wen et al (2018) foram aplicados autoencoders em conjunto como uma rede neural MLP na detecção de falhas que causam desbalanceamento em turbinas de corrente marítima.…”
Section: Introductionunclassified