With the special porous structure and super-long carbon sequestration characteristic, the biochar has shown to have potential in improving soil fertility, reducing carbon emissions and increasing soil carbon sequestration. However, the biochar technology has not been applied on a large scale, due to the complex structure, long transportation distance of raw materials, and high cost. To overcome these issues, the brazier-type gasification and carbonization furnace is designed to carry out dry distillation, anaerobic carbonization and have a high carbonization rate under high-temperature conditions. To improve the operation and maintenance efficiency, we formulate the operation of the brazier-type gasification and carbonization furnace as a dynamic multi-objective optimization problem (DMOP). Firstly, we analyze the dynamic factors in the work process of the brazier-type gasification and carbonization furnace, such as the equipment capacity, the operating conditions, and the biomass treated by the furnace. Afterward, we select the biochar yield and carbon monoxide emission as the dynamic objectives and model the DMOP. Finally, we apply three dynamic multiobjective evolutionary algorithms to solve the optimization problem so as to verify the effectiveness of the dynamic optimization approach in the gasification and carbonization furnace.