2020
DOI: 10.20311/stat2020.12.hu1366
|View full text |Cite
|
Sign up to set email alerts
|

A gazdasági növekedés és a szén-dioxid-kibocsátás kapcsolatának vizsgálata a környezeti Kuznets-görbével

Abstract: A tanulmány a környezeti Kuznets-görbe-hipotézis tesztelésével vizsgálja a gazdasági növekedés emissziós következményét. A szerző az idősorok eltérő integráltsági rendje miatt általános autoregresszív osztott késleltetett (autoregressive distributed lag, ARDL) modellt alkalmaz. Ennek eredményeként rövid és hosszú távon is elérte Magyarország azt a kritikus jövedelmi szintet, amely felett a gazdasági növekedés nem fokozza a szén-dioxid- (CO2-) kibocsátást. Az alapmodell fordított U-alakú, míg az energetikai, pé… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 0 publications
0
0
0
Order By: Relevance
“…We are able to make fairly accurate predictions one season ahead, while secondary and tertiary autocorrelation tests, that are considerably more complicated than primary examinations, are necessary for predicting multiple periods in advance. The regression analyses become confounding factors, and the interval estimation and the statistical trials connected to it become distorted [76,77]. The frequent problem of cross-section data is multicollinearity [78].…”
Section: Application Of Artificial Neural Networkmentioning
confidence: 99%
“…We are able to make fairly accurate predictions one season ahead, while secondary and tertiary autocorrelation tests, that are considerably more complicated than primary examinations, are necessary for predicting multiple periods in advance. The regression analyses become confounding factors, and the interval estimation and the statistical trials connected to it become distorted [76,77]. The frequent problem of cross-section data is multicollinearity [78].…”
Section: Application Of Artificial Neural Networkmentioning
confidence: 99%