Virtual channel (VC) flow control proves to be an alternative way to promote network performance, but uniform VC allocation in the network may be at the cost of chip area and power consumption. We propose a novel VC number allocation algorithm customizing the VCs in network based on the characteristic of the target application. Given the characteristic of target application and total VC number budget, the block probability for each port of nodes in the network can be obtained with an analytical model. Then VCs are added to the port with the highest block probability one by one. The simulation results indicate that the proposed algorithm reduces buffer consumption by 14.58%~51.04% under diverse traffic patterns and VC depth, while keeping similar network performance.