1997
DOI: 10.1145/248210.248223
|View full text |Cite
|
Sign up to set email alerts
|

A graph-constructive approach to solving systems of geometric constraints

Abstract: A graph-constructive approach to solving systems of geometric constraints capable of efficiently handling well-constrained, overconstrained, and underconstrained configurations is presented. The geometric constraint solver works in two phases: in the analysis phase the constraint graph is analyzed and a sequence of elementary construction steps is derived, and then in the construction phase the sequence of construction steps is actually carried out. The analysis phase of the algorithm is described in detail, i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
160
0

Year Published

1998
1998
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 190 publications
(160 citation statements)
references
References 24 publications
0
160
0
Order By: Relevance
“…A rigid body is a set of geometric primitives whose position and orientation relative to each other is known [5]. A structurally well-constrained graph defines a rigid body in most cases.…”
Section: G Is Structurally Well-constrained If It Is Neither Structurmentioning
confidence: 99%
See 1 more Smart Citation
“…A rigid body is a set of geometric primitives whose position and orientation relative to each other is known [5]. A structurally well-constrained graph defines a rigid body in most cases.…”
Section: G Is Structurally Well-constrained If It Is Neither Structurmentioning
confidence: 99%
“…In [5,13], Hoffmann et al proposed a method based on cluster formation to solve 2D and 3D constraint problems. In [16], Joan-Arinyo et al proposed an algorithm to decompose a 2D constraint problem into an s-tree.…”
Section: Introductionmentioning
confidence: 99%
“…In the rule-constructive method, "solvers use rewrite rules for discovery and execution of construction steps". Although complex constraints are easy to handle, exhaustive computation requirements (searching and matching) of these methods make them inappropriate for real world applications [39]. Examples of this approach are described in [40][41][42].…”
Section: Inter-part Constraint Detection and Managementmentioning
confidence: 99%
“…These steps are then followed to place the parts relative to each other. Graph constructive approaches are fast, methodical and provide means for developing robust algorithms [38,39,43,44]. An extensive review and classification of various constraint solving techniques is presented in [36].…”
Section: Inter-part Constraint Detection and Managementmentioning
confidence: 99%
“…the graph-constructive approach used in [5,6,7]. For some of these algorithms a proof of correctness has been given, e.g.…”
Section: Background and Related Workmentioning
confidence: 99%