Nowadays, several wireless location systems have been developed in the research world. The goal of these systems has always been to find the greatest accuracy as possible. However, if every node takes data from the environment, we can gather a lot of information, which may help us understand what is happening around our network in a cooperative way. In order to develop this cooperative location and tracking system, we have implemented a sensor network to capture data from user devices. From this captured data we have observed a symmetry behavior in people's movements at a specific site. By using these data and the symmetry feature, we have developed a statistical cooperative approach to predict the new user's location. The system has been tested in a real environment, evaluating the next location predicted by the system and comparing it with the next location in the real track, thus getting satisfactory results. Better results have been obtained when the stochastic cooperative approach uses the transition matrix with symmetry.