Radio frequency identification technology (RFID) has empowered a wide variety of automation industries. Aiming at the current light-weight RFID encryption scheme with limited information protection methods, combined with the physical unclonable function (PUF) composed of resistive random access memory (RRAM), a new type of high-efficiency reconfigurable strong PUF circuit structure is proposed in this paper. Experimental results show that the proposed PUF shows an almost ideal value (50%) of inter-chip hamming distance (HD) (µ/σ = 0.5001/0.0340) among 1000 PUF keys, and intra-chip HD results are very close to the ideal value (0). The bit error rate (BER) is as low as 3.8×10−6 across one million challenges. Based on the RRAM PUF, we propose and implement a light weight RFID authentication protocol. By virtue of RRAM’s model ability, the protocol replaces the One-way Hash Function with a response chain mutual encryption algorithm. The results of test and analysis show that the protocol can effectively resist multiple threats such as physical attacks, replay attacks, tracking attacks and asynchronous attacks, and has good stability. At the same time, based on RRAM’s unique resistance variability, PUF also has the advantage of being reconfigurable, providing good security for RFID tags.