In wind tunnel tests, cantilever stings are often used as model-mount in order to reduce flow interference on experimental data. In this case, however, large-amplitude vibration and low-frequency vibration are easily produced on the system, which indicates the potential hazards of gaining inaccurate data and even damaging the structure. is paper details three algorithms, respectively, Classical PD Algorithm, Artificial Neural Network PID (NNPID), and Linear Quadratic Regulator (LQR) Optimal Control Algorithm, which can realize active vibration control of sting used in wind tunnel. e hardware platform of the first-order vibration damping system based on piezoelectric structure is set up and the real-time control software is designed to verify the feasibility and practicability of the algorithms. While the PD algorithm is the most common method in engineering, the results show that all the algorithms can achieve the purpose of over 80% reduction, and the last two algorithms perform even better. Besides, self-tuning is realized in NNPID, and with the help of the Observer/Kalman Filter Identification (OKID), LQR optimal control algorithm can make the control effort as small as possible. e paper proves the superiority of NNPID and LQR algorithms and can be an available reference for vibration control of wind tunnel system.