Nonvolatile switching is still a missing functionality in current mainstream silicon photonics complementary metal‐oxide‐semiconductor platforms. Fundamentally, nonvolatile switching stands for the ability to switch between two or more photonic states reversibly without needing additional energy to hold each state. Therefore, such a feature may push one step further the potential of silicon photonics by offering new ways of achieving photonic reconfigurability with ultrasmall energy consumption. Here, a detailed review of current developments that enable nonvolatile switching in silicon photonic waveguide devices is provided. Nonvolatility is successfully demonstrated either based on device engineering or by hybrid integration of silicon waveguides with materials exhibiting unique optical properties. Furthermore, several approaches with high potential for evolving toward a nonvolatile behavior with enhanced performance are also being explored. In most cases, many development steps are still necessary to ensure reliable devices. However, this research field is expected to progress in the coming years boosted by current and emerging applications benefiting from such functionality, such as new paradigms for photonic computing or advanced reconfigurable circuits for programmable photonic systems.