Abstract:Functional-Structural Plant Models (FSPM) are becoming important tools for modeling the structure and growth of plants, including complex organisms like trees. These models combine the advantages of empirical, mechanistic, and structural models to simulate the growth of individual plant structures (branches, buds, leaves, etc.). This approach enables realistic evaluation of the plant's responseincluding changes in structure and growth to different environmental conditions. We demonstrate the potential use of these models to evaluate individual tree growth under different management regimes (pruning). The data used in this study was obtained from 3-D measurements taken with a FASTRAK Polhemus digitizer, with specific attention given to bud creation and branching. Each branch segment was analyzed to estimate its age, enabling us to document annual structural changes. We use the XL programming language and a GroIMP environment to simulate and compare different pruning scenarios.