The effect of plasma parameters (e.g., electron density and temperature, ion density and temperature, neutral atom density, and temperature) on the growth (without a catalyst), structure, and field emission of electrons from a cylindrical metallic carbon nanotube (CNT) surfaces has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, positively charged ions, and neutral atoms, and the energy balance of the various species in plasma, has been developed. Numerical calculations of the radius of the cylindrical CNT for different CNT number densities and plasma parameters have been carried out for the typical glow discharge plasma parameters. It is found that, on increasing the CNT number density and plasma parameters, the radius of cylindrical CNT decreases and consequently, the field emission factor for the metallic cylindrical CNT surfaces increase.