2007
DOI: 10.1007/s11147-008-9020-3
|View full text |Cite
|
Sign up to set email alerts
|

A model of discontinuous interest rate behavior, yield curves, and volatility

Abstract: Interest rates, Yield curve, Levy process,

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2008
2008
2021
2021

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 26 publications
0
4
0
1
Order By: Relevance
“…The interest rate has been assumed to follow a gamma distribution in some traditional researches (Heston 2007;Fabozzi et al 2009). Some studies show that the CIR process (Cox et al 1985) yields a non-central chi-square transitional distribution, while the marginal density is a gamma distribution (Feller 1951;Ait-Sahalia 1996).…”
Section: The Modelmentioning
confidence: 99%
“…The interest rate has been assumed to follow a gamma distribution in some traditional researches (Heston 2007;Fabozzi et al 2009). Some studies show that the CIR process (Cox et al 1985) yields a non-central chi-square transitional distribution, while the marginal density is a gamma distribution (Feller 1951;Ait-Sahalia 1996).…”
Section: The Modelmentioning
confidence: 99%
“…valid for |α| < 1 and h ≥ 0 (Erdélyi 1953), which gives us the required series expansion of the exponential gamma martingale in powers of α. In particular, by setting h = mt and z = γ t in equation (12), we are able to deduce that for each value of n the process {L Schoutens 2000). For example, we have…”
Section: Gamma Processes and Associated Martingalesmentioning
confidence: 99%
“…We note that the change-of-measure density martingale arising in this example is obtained by taking the standard gamma exponential martingale (10) defined above, and setting α = (1 − κ)/κ. The gamma process has been used as the basis of a number of different asset pricing models; see, for example, Madan & Seneta (1990), Madan and Milne (1991), Heston (1995)…”
Section: Gamma Processes and Associated Martingalesmentioning
confidence: 99%
“…Debe establecerse que las estructuras de información modeladas de esta manera no permiten la existencia de eventos que sean sorpresivos; la evolución de la variable aleatoria relevante mantendrá un comportamiento relativamente suave, sin grandes cambios y sin saltos en su evolución temporal. No obstante, las investigaciones empíricas contemporáneas desarrollada por Chan, Karolyi, Longstaff y Sanders(1992), Brenner, Harjes y Corner(1994), Das(1994), Heston (1995) y Ait-Sahalia (1995) apuntan a que en algunas ocasiones ello es insuficiente para capturar correctamente la dinámica de variables financieras como los rendimientos, por lo que se debe recurrir a la incorporación de discontinuidades en los procesos estocásticos que describan mejor la trayectoria de las variables. Una forma de capturar el exceso de curtosis de las series financieras es mediante la aplicación de modelos que permitan incorporar explícitamente los saltos en la evolución estocástica de las variables.…”
Section: Introductionunclassified