Flow shop problems as a typical manufacturing challenge have gained wide attention in academic fields. In this paper, we consider a bi-criteria permutation flow shop scheduling problem, where the weighted mean completion time and the weighted mean tardiness are to be minimized simultaneously. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a new multi-objective shuffled frog-leaping algorithm (MOSFLA) is introduced for the first time to search locally Pareto-optimal frontier for the given problem. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three distinguished multi-objective genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed MOSFLA performs better than the above genetic algorithms, especially for the large-sized problems.