1998
DOI: 10.21236/ada344641
|View full text |Cite
|
Sign up to set email alerts
|

A New Boussinesq-Type Model for Surface Water Wave Propagation

Abstract: Normalized vertical profile of linear horizontal velocity for several values of y. Exact (solid), Nwogu (dash-dot), Present (dash).. . 3.5 Normalized vertical profile of linear vertical velocity for several values of pi. Exact (solid), Nwogu (dash-dot), Present (dash)... 3.6 Ratio of approximate results for w(O)/u(O) to the exact linear solution. Nwogu (dash-dot), Present solution (dash) ....... ...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

1999
1999
2010
2010

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 42 publications
0
1
0
2
Order By: Relevance
“…In this subsection, an extension of the numerical scheme of WKGS is used to compute several approximate solitary wave solutions to the fully nonlinear models FN4 and WKGS. Details of the numerical scheme may be found in Gobbi & Kirby (1999) or Gobbi (1998). The initial condition used for the model was constructed from the computer program by Tanaka (1986) in the following manner: for the smallest computed wave with amplitude η max ≈ 0.2, η andũ (u α in the case of WKGS) were obtained from Tanaka's exact solution and used as initial condition for FN4 and WKGS.…”
Section: Numerical Properties Of Solitary Wavesmentioning
confidence: 99%
“…In this subsection, an extension of the numerical scheme of WKGS is used to compute several approximate solitary wave solutions to the fully nonlinear models FN4 and WKGS. Details of the numerical scheme may be found in Gobbi & Kirby (1999) or Gobbi (1998). The initial condition used for the model was constructed from the computer program by Tanaka (1986) in the following manner: for the smallest computed wave with amplitude η max ≈ 0.2, η andũ (u α in the case of WKGS) were obtained from Tanaka's exact solution and used as initial condition for FN4 and WKGS.…”
Section: Numerical Properties Of Solitary Wavesmentioning
confidence: 99%
“…Perumusan persamaan potensial kecepatan diawali dengan penyelesaian persamaan Laplace dengan metoda pemisahan variabel. Berdasarkan Dean [3], hasil penyelesaian persamaan tersebut setelah dimasukkan syarat batas lateral dan syarat batas kinematik dasar perairan dengan dasar datar adalah = 0, Pada hasil perhitungan tersebut juga terlihat pengaruh amplitudo gelombang yaitu bahwa semakin besar amplitudo semakin pendek panjang gelombang.…”
Section: Persamaan Potensial Kecepatanunclassified
“…Pada proses perumusan terdapat hal-hal yang diabaikan, karena itu persamaan masih perlu disempurnakan untuk mendapatkan persamaan yang lebih baik. Syarat batas kinematik permukaan adalah [3] dan syarat batas kinematik dasar perairan adalah [3] Dengan menggunakan kedua syarat batas tersebut, persamaan kontinuitas yang terintegrasi terhadap kedalaman menjadi dimana η adalah fluktuasi muka air terhadap muka air diam (Gambar A.1).…”
Section: Kesimpulanunclassified