In this article, a four parameter lifetime model called the Topp–Leone modified Weibull distribution is proposed. The suggested distribution can be considered as an alternative to Kumaraswamy Weibull, generalized modified Weibull, extend odd Weibull Lomax, Weibull-Lomax, Marshall-Olkin alpha power extended Weibull and exponentiated generalized alpha power exponential distributions, etc. The suggested model includes the Topp-Leone Weibull, Topp-Leone Linear failure rate, Topp-Leone exponential and Topp-Leone Rayleigh distributions as a special case. Several characteristics of the new suggested model including quantile function, moments, moment generating function, central moments, mean, variance, coefficient of skewness, coefficient of kurtosis, incomplete moments, the mean residual life and the mean inactive time are derived. The probability density function of the Topp–Leone modified Weibull distribution can be right skewed and uni-modal shaped but, the hazard rate function may be decreasing, increasing, J-shaped, U-shaped and bathtub on its parameters. Three different methods of estimation as; maximum likelihood, maximum product spacing and Bayesian methods are used to estimate the model parameters. For illustrative reasons, applications of the Topp–Leone modified Weibull model to four real data sets related to medical and engineering sciences are provided and contrasted with the fit reached by several other well-known distributions.