In this paper, we target dissemination issues of emergency messages in a highly dynamic Internet of Vehicles (IoV) network. IoV is emerging as a new class of vehicular networks to optimize road safety as well as users’ comfort. In such a context, forwarding emergency messages through vehicle-to-vehicle communications (V2V) plays a vital role in enabling road safety-related applications. For instance, when an accident occurs, forwarding such information in real time will help to avoid other accidents in addition to avoiding congestion of network traffic. Thus, dissemination of emergency information is a major concern. However, on the one hand, vehicle density has increased in the last decade which may lead to several issues including message collisions, broadcast storm, and the problem of hidden nodes. On the other hand, high mobility of vehicles and hence dynamic changes of network topology result in failure of dissemination of emergency packets. To overcome these problems, we propose a new dissemination scheme of emergency packets by vehicles equipped with both DSRC and cellular LTE wireless communication capabilities. Our scheme is based on a dynamic clustering strategy, which includes a new cluster head selection algorithm to deal with the broadcast storm problem. Furthermore, our selection algorithm enables not only the election of the most stable vehicles as cluster heads, and hence their exploitation in forwarding the emergency information, but also the avoidance of packet collisions. We simulated our scheme in an urban environment and compared it with other data dissemination schemes. Obtained results show the efficiency of our scheme in minimizing collision and broadcast storm problems, while improving latency, packet delivery ratio and data throughput, as compared to other schemes.