A novel salt-tolerant alpha-proteobacterium, designated SALINAS58T, was isolated from Santa Engracia hypersaline spring water in the Añana Salt Valley, Álava, Spain. The isolate was Gram-negative, aerobic, non-motile, catalase-positive, oxidase-negative, rod-shaped and formed orange colonies on marine agar. Optimal growth was observed at pH 6.0–6.5, at 30 °C and in the presence of 1% (w/v) NaCl. The main cellular fatty acids (>20%) were summed feature 8 (C18 : 1
ω7c and/or C18 : 1
ω6c) and summed feature 3 (C16 : 1
ω7c and/or C16 : 1
ω6c). The major respiratory quinone was ubiquinone Q-10 and the major polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidilglycerol, four unidentified glycolipids and one unidentified phospholipid. Strain SALINAS58T had the highest 16S rRNA gene sequence similarity to
Altererythrobacter marensis
MSW-14T (96.6%),
Altererythrobacter aquaemixtae
JSSK-8T (96.5%) and
Pontixanthobacter luteolus
SW-109T (96.5%) followed by
Altererythrobacter atlanticus
26DY36T (96.4%). Results of the phylogenetic analysis, based on 16S rRNA gene sequences, and phylogenetic approaches based on whole genome nucleotide differences, showed that strain SALINAS58T could be distinguished from recognized species of the genus
Altererythrobacter
. The genomic DNA G+C content was 61.4 mol%. Digital DNA–DNA hybridization, average nucleotide identity and average aminoacid identity values between the genome of strain SALINAS58T and
A. marensis
MSW-14T were 18.4, 73.1 and 68.1%, respectively. Based on data from this polyphasic characterization, strain SALINAS58T (=CECT 30029T=LMG 31726T) is considered to be classified as representing a novel species in the genus
Altererythrobacter
, for which the name Altererythrobacter muriae sp. nov. is proposed.